

Chess Engine Programming
Rhys Rustad-Elliott

Slides: rhysre.net/chess_engine_programming.pdf

Goals

1) Understand how chess engines work at a
fundamental level

2) Gain enough insight to build your own engine

Shallow Blue
● My own chess engine
● Named after IBM’s Deep Blue chess computer
● Written in C++
● Plays a fairly reasonable game of chess

– I can’t beat it

● Will be using examples in Shallow Blue throughout this
presentation

● Source all on GitHub for those interested
– github.com/GunshipPenguin/shallow-blue

Outline
● Board representation
● Move generation
● Evaluation
● Search

– Alpha-beta pruning

Bit Manipulation Crash Course
● Base 2
● Bitwise AND
● Bitwise OR
● Bitwise XOR

Board Representation
● Naive approaches

– Easy to implement
– Incredibly slow for move generation

● Bitboards allow for fast move generation
● Just a 64 bit value, bit 0 is a1, bit 63 is h8
● Bitboards exploit a nice coincidence
● 12 are required to fully represent a board, more are often used

– Eg. Occupied squares, White pieces, Black pieces

Bit Indexes

Bitboard Example: Start Position

Move Generation
● For a given position, we need to generate all

possible legal moves
● Must work perfectly for your engine to actually

play a game
● Two main approaches exist

Move Generation Approaches
● Two approaches

– Pseudo-legal move generation
– Legal move generation

● Pseudo-legal – Generate all moves that follow the
normal rules of movement, disregarding whether or
not they move us into check. (Moves that move us into
check are discarded after move generation is finished)

● Legal – Generate all legal moves

Legal vs. Pseudo-Legal Moves

Move Generation (cont.)
● Shallow Blue uses pseudo-legal move generation
● Pieces can be put into one of 2 categories

– Non-sliding: King, Knight, Pawn
– Sliding: Queen, Rook, Bishop

● Sliding pieces can move an indefinite number of
squares along a rank/file/diagonal until hitting an edge

● Non sliding pieces can move to a predetermined
number of squares depending on their starting position

Example: White Pawn Single
Moves

P = Pawn Bitboard

C = Occupancy Bitboard

Move Bitboard =

((P << 8) & (~C)) &
~RANK_8

Example: King Moves

K = King Bitboard

F = Friendly Pieces
Bitboard

Move Bitboard = ?

Other non sliding pieces
● Technique is the same for Knights
● Non sliding move generation is generally fairly

straightforward

Sliding Piece Generation
● Many ways to implement this
● Shallow Blue uses the “Classical Approach”

– Not the fastest, but fairly straightforward

Example: Classical Approach

Perft Testing
● Way of throughly testing move generation
● Generate all moves at a certain depth in the

future and compare against precomputed
values

Why Test Move Generation?
● White to move
● 5 plys (halfmoves) in the

future, 193,690,690
possible positions

● Your engine generates
193,690,693

● You have no tests
● Have fun debugging :)

Evaluation
● How the engine determines how good a position is
● Scores are given in centipawns (1/100th of a pawn)

– This is the de facto standard

● Scores need to be given relative to the other player (both
scores will always sum to 0)

● Evaluation functions can take many things into account,
each one weighted differently

● I’ll only be covering what Shallow Blue uses

Material Value
● Value of pieces
● Assignments in Shallow Blue

– Pawn = 100 cp (by definition)
– Knight = 320 cp
– Bishop = 330 cp
– Rook = 500 cp
– Queen = 900 cp

Piece Square Tables
● The same piece can be more valuable on

different squares
– Eg. A Queen in the center is more valuable than one

in the corner

● Piece Square Tables allow this to be taken into
account during evaluation

Mobility
● Number of legal moves available to you
● Having more moves at your disposal is usually

an advantage
● Usually assigned a small weight in relation to

other factors
– Shallow Blue assigns each move 1 cp

Other Evaluation Features
● King Safety
● Pawn Structure

Search
● The beating heart of the chess engine
● How it actually determines what moves are best
● Minimax Search

Minimax Search
● How a Chess Engine “looks ahead”
● Searches through a tree of min nodes and max nodes

– Max player = us (trying to maximize score)
– Min player = our opponent (trying to minimize score)

● All possible move combinations x plys in the future
represented in a tree

● Notice the efficiency

Alpha Beta Pruning
● A way of optimizing minimax search
● Performs the same recursive search, but maintains 2

values
– Alpha: Best score for the max player from current

position (lower bound on score)
– Beta: Best score for the min player from current position

(upper bound on score)

● In the best case, can reduce bd nodes to √bd

What I Haven’t Covered
● Move ordering
● Transposition tables / Zobrist hashing
● Iterative deepening
● Chess communication protocols (UCI/Xboard)
● Quiescence search
● Principal Variation Search

Thanks!
● Resources

– Chess Programming Wiki
● chessprogramming.wikispaces.com

– Shallow Blue
● github.com/GunshipPenguin/shallow-blue
● rhysre.net/shallowblue_docs

● How to yell at me
– me@rhysre.net
– Happy to answer any questions :)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

