
Graph TheoryGraph Theory
PRESENTED BY: PETER ZHU
M A RC H 9 , 2 0 1 8

Topics of Today
1. What is a graph?

2. Graph Traversal (BFS + DFS)

3. Shortest Distance (Dijkstra’s Algorithm)3. Shortest Distance (Dijkstra’s Algorithm)

4. Minimum Spanning Tree (Kruskal’s Algorithm)

5. Graph Bi-Coloring (Bipartite Checking Algorithm)

What is a Graph?
• A data structure formed by connecting nodes (a.k.a vertex)

using edges

• Types of Graphs:

1. Directed
2. Undirected

1. Weighted
2. Non-weighted

1. Cyclic
2. Acyclic

How is a Graph Represented?
• Two ways:

1. Adjacency List
2. Adjacency Matrix

Graph Representation – Adjacency List
• Using a dictionary that maps each node to a list of connected

nodes

• Good for both directed and undirected graphs
graph = {• Defaults to unweighted, can be

weighted through some “hacking”

graph = {
0: [1],
1: [0, 2, 3, 4],
2: [1, 5],
3: [1, 4],
4: [1, 3, 5],
5: []

}

Graph Representation – Adjacency
Matrix
• Uses a n×n list to represent connection between nodes

• Good for directed/undirected, weighted/unweighted

graph = [graph = [
[0, 3, None, None],
[-1, 0, 0, None],
[None, None, 0, None],
[None, None, 5, 0]

]

Graph Representation – Adj. List vs. Adj.
Matrix
• Let E be the number of edges in our graph, and N be the

number of nodes in our graph

• Space complexity of adjacency list: O(E+N)

• Space complexity of adjacency matrix: O(N2)

Graph Traversal - Motivation
• A ton of use cases, just to name a few:

1. Searching
2. Graph manipulation
3. Foundations for other algorithms3. Foundations for other algorithms
4. Finding shortest path between two nodes

◦ Only efficient for unweighted graph

Graph Traversal – Depth First Search
(DFS)
• Similar to DFS for trees

• A visited set is used to keep track of nodes already visited

• Pseudocode:• Pseudocode:

def dfs(graph, curr_node, visited):
print(curr_node)
visited << curr_node
for neighbour of graph[curr_node]:

if (neighbour is not in visited):
dfs(graph, neighbour, visited)

Graph Traversal – Breadth First Search
(BFS)
• Similar to BFS for trees

• queue is used to keep
track of visit order

def bfs(graph):
visited <- list
queue <- Queue

queue << graph[0]• Pseudocode: queue << graph[0]
visited[0] = True
while queue is not empty:

curr = queue.pop()
print(curr)
for adj in graph[curr]:

if (visited[adj] == False):
queue << adj
visited[adj] = True

Dijkstra’s Algorithm
• Algorithm for finding the shortest path from one node to

every other node

• Graph can be weighted/unweighted, directed/undirected,
cyclic/acyclic BUT NO NEGATIVE EDGEScyclic/acyclic BUT NO NEGATIVE EDGES

def dijkstra(adj_matrix, source):
nodes <- Set
dist <- dict
prev <- dict
for vertex in adj_matrix:

dist[vertex] <- INFINITY
prev[vertex] <- None
nodes << vertex

dist[source] <- 0

while nodes is not empty:while nodes is not empty:
u <- vertex in nodes with min dist[u]
remove u from nodes

for neighbour of u:
new_path = dist[u] + adj_matrix[source][u]
if new_path < dist[source]:

dist[source] <- new_path
prev[source] <- u

return (dist, prev)

Dijkstra’s Algorithm - Complexities
• Let V be the number of vertices, E the number of edges

• Time complexity: O(V+E)

• Space complexity: O(V)• Space complexity: O(V)

• Further exploration: Bellman-Ford algorithm, Floyd-Warshall
algorithm

Minimum Spanning Trees (MST)
• A MST is a subgraph that connects all vertices together with

the minimum possible total edge weight

• We will only consider MST for undirected graphs

• Intuitive example: a telephone company wants to lay cables
for a community, a MST will be the most efficient way to lay
these cables to reach every home

MST – Kruskal’s Algorithm – Disjoint Set
• A set that is partitioned into a number of subsets

• Operations:
• makeset(node): Adds a node to the disjoint set in its own

subsetsubset
• find(node): Finds the representative element (root node) of

the node
• union(x, y): Merges nodes x and y

MST – Kruskal’s
Algorithm –
Disjoint Set

class DSNode:
node <- int
parent <- DSNode

class DisjointSet:
ds_set <- Set

def makeset(node):
if node not in ds_set:

ds_set << node

def find(node):
if node.parent is not node:

node.parent = find(node.parent)
return node.parent

def union(x, y):
x_root, y_root = find(x), find(y)

y_root.parent = x_root

def mst(graph):
edges <- sort(graph.edges)

vertices <- DisjointSet
for vertex in graph:

MST – Kruskal’s Algorithm

for in
vertices << vertex

mst_edges <- list

for e in edges:
if (vertices.find(e.pointA) != vertices.find(e.pointB)):

vertices.union(e.pointA, e.pointB)
mst_edges << e

return mst_edges

MST – Kruskal’s Algorithm – Complexities
• Let E be the number of edges, V be the number of vertices

• Average case complexity: O(E logV)

• Space complexity: O(E+V)• Space complexity: O(E+V)

• Further exploration: Prim’s MST algorithm

Bipartite Graph
• A bipartite graph is a graph whose vertices can be

decomposed into two disjoint sets such that no two vertices
within the same set are adjacent

• Used on undirected, unwieghted graphs• Used on undirected, unwieghted graphs

Bipartite Checking
Algorithm

def bipartite(graph):
colors <- dict
colors[graph[0]] = True

queue <- Queue
queue << graph[0]

while queue is not empty:
curr_node = queue.pop()
curr_color = colors[curr_node]

for child in curr_node.neighbours:
if colors[child] is None:

colors[child] = not curr_color
queue << child

elif colors[child] == curr_color:
return False

return True

Bipartite Checking Algorithm
• Let V be the number of vertices and E be the number of

edges

• Time complexity: O(V+E)

• Space complexity: O(V)

Further Exploration
• In addition to the previously mentioned:

• Tarjan’s Algorithm for finding Strongly Connected Components
• Tarjan’s Algorithm for Articulation Points
• Johnson’s Algorithm for finding all the cycles in a directed graph• Johnson’s Algorithm for finding all the cycles in a directed graph
• Bellman-Ford Algorithm to detect negative cycles in the graph
• N-Queen problem
• Travelling Salesman problem

