Graph Theory

PRESENTED BY: PETER ZHU

Topics of Today

What is a graph?

Graph Traversal (BFS + DFS)

Shortest Distance (Dijkstra’s Algorithm)

Minimum Spanning Tree (Kruskal’s Algorithm)

A S

Graph Bi-Coloring (Bipartite Checking Algorithm)

9%
What is a Graph? &

e A data structure formed by connecting nodes (a.k.a vertex)
using edges

 Types of Graphs:

1. Weighted
2. Non-weighted

1. Directed
2. Undirected

How is a Graph Represented?

* Two ways:
1. Adjacency List
2. Adjacency Matrix

Graph Representation — Adjacency List

e Using a dictionary that maps each node to a list of connected
nodes

* Good for both directed and undirected graphs
graph = {

* Defaults to unweighted, can be

weighted through some “hacking”

— R R RO

O > W N P O

Graph Representation — Adjacency
Matrix

 Uses anxn list to represent connection between nodes

* Good for directed/undirected, weighted/unweighted

graph = [
[O, 3, None, None],
[-1, 0, 0, None],
[None, None, 0, None],
[None, None, 5, 0]

Graph Representation — Adj. List vs. Adj.
Matrix

* Let E be the number of edges in our graph, and N be the
number of nodes in our graph

e Space complexity of adjacency list: O(E+N)

* Space complexity of adjacency matrix: O(N?)

Graph Traversal - Motivation

* A ton of use cases, just to name a few:
Searching

Graph manipulation

Foundations for other algorithms

Finding shortest path between two nodes
o Only efficient for unweighted graph

W e

Graph Traversal — Depth First Search
(DFS)

e Similar to DFS for trees

* Avisited set is used to keep track of nodes already visited

e Pseudocode:

def dfs(graph, curr node, visited):
print (curr node)
visited << curr node
for neighbour of graphl[curr node]:
if (neighbour is not in visited):
dfs (graph, neighbour, visited)

Graph Traversal — Breadth First Search
(BFS)

e Similar to BFS for trees |def bfs(graph):
_ visited <= list
e queue is used to keep queue <- Queue

track of visit order

queue << graph[0]
visited[0] = True
while gqueue is not empty:

curr = queue.pop ()

print (curr)

for adj in graph[curr]:

if (visited[adj] == False):
queue << adj

_ visited[adj] = True I

e Pseudocode:

Dijkstra’s Algorithm

e Algorithm for finding the shortest path from one node to
every other node

* Graph can be weighted/unweighted, directed/undirected,
cyclic/acyclic BUT NO NEGATIVE EDGES

def dijkstra(adj matrix, source):

nodes <- Set

dist <- dict

prev <- dict

for vertex in adj matrix:
dist[vertex] <- INFINITY
prev[vertex] <- None
nodes << vertex

dist[source] <= 0

while nodes is not empty:
u <= vertex 1in nodes with min dist[u]
remove u from nodes

for neighbour of u:
new path = dist[u] + adj matrix[source] [u]
if new path < dist[source]:
dist[source] <- new path
prev[source] <- u

return (dist, prev)

Dijkstra’s Algorithm - Complexities

 Let Vbe the number of vertices, E the number of edges

* Time complexity: O(V+E)
 Space complexity: O(V)

* Further exploration: Bellman-Ford algorithm, Floyd-Warshall
algorithm

Minimum Spanning Trees (MST)

* A MST is a subgraph that connects all vertices together with
the minimum possible total edge weight

 We will only consider MST for undirected graphs

* Intuitive example: a telephone company wants to lay cables
for a community, a MST will be the most efficient way to lay
these cables to reach every home

MST — Kruskal’s Algorithm — Disjoint Set

 Asetthatis partitioned into a number of subsets

* (Operations:

* makeset (node) : Adds a node to the disjoint set in its own
subset

« find (node): Finds the representative element (root node) of
the node

e union(x, vy):Mergesnodesxandy

MST — KrUSkarS class DSNode:

node <- int

AlgOrlthm _ parent <- DSNode
Disjoint Set

class DisjointSet:
ds set <- Set

def makeset (node) :
if node not in ds set:
ds set << node

def find(node) :
if node.parent is not node:
node.parent = find(node.parent)
return node.parent

def union(x, vy):
x _root, y root = find(x), find(y)

_ y root.parent = x root -

MST — Kruskal’s Algorithm

def mst (graph) :
edges <- sort (graph.edges)

vertices <- DisjointSet
for vertex in graph:
vertices << vertex

mst edges <- list

for e in edges:
if (vertices.find(e.pointA) != vertices.find(e.pointB)):
vertices.union (e.pointA, e.pointB)
mst edges << e

- return mst edges l

MST — Kruskal’s Algorithm — Complexities

* Let E be the number of edges, V be the number of vertices

 Average case complexity: O(E logV)

e Space complexity: O(E+V)

* Further exploration: Prim’s MST algorithm

e & » 9
e & o @ @
L]

L]

Bipartite Graph

A bipartite graph is a graph whose vertices can be
decomposed into two disjoint sets such that no two vertices
within the same set are adjacent

 Used on undirected, unwieghted graphs

Bipartite Checking
Algorithm

def bipartite(graph) :
colors <- dict
colors|[graph[0]]

= True

queue <- Queue
queue << graph[0]

while gueue is not empty:
curr node queue.pop ()
curr color colors[curr node]

for child in curr node.neighbours:
if colors[child] is None:
colors[child] not curr color
queue << child
elif colors[child]
return False

curr color:

return True

Bipartite Checking Algorithm

e Let Vbe the number of vertices and E be the number of
edges

 Time complexity: O(V+E)

e Space complexity: O(V)

Further Exploration

* In addition to the previously mentioned:
* Tarjan’s Algorithm for finding Strongly Connected Components
 Tarjan’s Algorithm for Articulation Points
* Johnson’s Algorithm for finding all the cycles in a directed graph
* Bellman-Ford Algorithm to detect negative cycles in the graph
* N-Queen problem

* Travelling Salesman problem

