=L

WEEK 5: RECURSION

November 11, 2016

COMPUTER SCIENCE ENRICHMENT CLUB

1\@ FIBONACCI

*0,1,1,2,3,5,8,13,21,34,55,89, 144.... x_ , x =x_, + x_,

®* One of the more famous example of sequences is the Fibonacci
sequence, also know as the golden ratio, it is a interesting
here the n' ber i f th ious t
sequence where the n™ number is a sum of the previous two

numbers preceding the n number.

N

TASK

®*Create a function, that takes a integer x such that

x>0 and outputs the sequence of Fibonacci numbers

32a N - ‘<o W ¥ o 7525 T X :
X N K 4 \,4\":_‘71-v g\ -.} «” . A M . « ,
i VPR R | KREAsLgw Ry B

up til the xth position. DERRE Sty Y e

SOLUTION

#include <iostream>

using namespace std;
int main()

{

int 1 = 9;
int k =1;
int j = 1;
int sum 9;
3

W oo~owum B wMmEe

while(i < 30)

{

std::kout << J <X
sum=7j+k;

J=K;

k=sum;

i++;

"<<endl;

IS THERE ANOTHER WAY ¢

® Yes, with recursion another solution can be found

=

#include <iostream>
using namespace std;
int fib(int x) {

if (x == 0)
return 0;

W ool B WM

if (x == 1)
return 1;

return fib(x-1)+fib(x-2);

main() {
for(int 1 = 0@; i<50;i++){
cout << fib(i) << " ";

}

RECURSION

®* What is it¢

Recursion, see Recursion.

® In simple words, if you have a problem, you break it into smaller

problems of the same type.

® There are 3 common patterns to recursive decomposition

* N-1 Approach: Deal with one item (often the first or last), and call the recursion

on the remaining N-1
* Divide and Conquer: Split the problem into 2 or more smaller problems

* Indirect Recursion: Function 1 calls function 2, which in turn calls function 1

IS THERE A BETTER WAY ¢

W oo 1oy B WM

#include <iostream>
using namespace std;
int fib(int x) {

if (x == 0)

return 0;

if (x == 1)
return 1;

return fib(x-1)+fib(x-2);

main() {
for(int i = @; 1<50;i++){
cout << 'Fib(i) << " ”_;

}

Hmmm.... This looks
Familiar

Base Case

Base Case

Recursive Step

Tl

RECURSION AND INDUCTION

® Induction:
-Base Case
-Induction Hypothesis
-Induction Step

® Recursion:
-Base Case

-Recursive Step

®* While induction is about proving if n exists then surely n+1 exists, recursion is
the concept that if a certain task can be done on n elements, then the same

task can be done on n-1 elements.

RULES OF RECURSION

* Recursion consists of 2 phases:
®* Base Case

® Recursive Decomposition
®* Base case should be trivial
® Decomposition must make problems smaller/simpler
®* Decomposed problems must be self-similar to original

® Decomposition must eventually lead to base case

DRAWING A SIERPINSKI TRIANGLE USING RECURSION

SO WHY USE RECURSION

® Anything that is recursive can be done iteratively, so why

do it recursively?
® Less error prone — less code to go wrong

®* Makes some specific problems easier, in particular tree

traversal is a lot easier with it

® Reduce time complexity of specific problems

SOLUTION

Finding the factorial of a number with N-1 recursive approach

#include <iostream>
using namespace std;

[

int factorial(int);

int main()
{
int n;
n = 10;
cout << "Factorial of " <« R S factorial(n)qqendﬂ;
return ©;

W oo wupbwmp

}

int factorial(int n)

{

if (n > 1)
{

return n*factorial(n-1);

}

else

{
}

return 1;

Factorial of 16 = 3628800
[Finished in ©.4s]

THINGS THAT CAN GO WRONG WITH RECURSION

®* Base cases not being properly defined or not reached causing stack overflow

error
® Implementation
® Sometimes the problem is inherently iterative

® Stack overflow

ADVANCED PROBLEM

®* Given a array, and a element to search for, find the index of that element
® Constraint: Must use recursive Divide and Conquer technique.

® Bonus: Do it in O(nlogn)

SOLUTION

1 #include <cstdlib> 24 int binary search(int array[],int first,
2 #include <iostream> 25 int last, int search_key)

: . 26 {
3 using namespace std; 27 int index;
ﬂ L] - L] L] L 28
5 int binary_search(int array[],int first, 29 if (first > last)
6 int last, int value); 30 index = -1;
7 31
8 int main() { 32 else
9 33 |

. . 34 int mid = (first + last)/2;

10 int list[10]; ™ (firs ast)/
11 36 if (search_key == array[mid])
12 for (int k=0; k<1l; k++) 37 index = mid;
13 list[k]=2"k+1; 38 else
14 39
15 for (int k=0; k<11; k++) 40 %F (searcb_key < array[mid]) . .
16 foolistlk — 41 index = binary_search(array,first, mid-1, search_key);

cout<<list[k] << ; 47 else
17 43 index = binary_search(array, mid+1, last, search_key);
18 cout<< endl<<"binary search results: " 44
19 << binary_search(list,1,21,11)<<endl; 45 }
20 46 return index;

. 47 }

21 return 9;
22} 1357 911 13 15 17 19 21

o binary search results: 5

