Prim’s Algorithm

A Cursory Introduction to Graph Problems in Computer Science

PRESENTED BY: William Granados

Terminology

Connected Graph

 Given a graph the spanning tree is a subgraph that
connects all vertices. A spanning tree also has V-1 edges.
« The minimum spanning tree is a subgraph where the edge

weights are minimized
« Agraphis connected if there is a path between all edges in

the graph

Disconnected

lTerminology Gontinued

An algorithm is considered greedy Iif it makes the locally
optimal choice which may or may not find the most optimal
solution to a problem

An example, try to make change for $36 using the standard
Canadian coin denominations.

Note that greedy algorithms may not always work, can you
think of a twist to the coin change problem which will break
your strategy? (Hint: use different denominations)

What does Prim's algorithm do?

Prim’s Algorithm is a greedy algorithm that finds the minimum
spanning tree for a connected weighted undirected graph(Wiki).
The implementation in this presentation will do so in O(|E]| log |V])
making use of a priority queue and an adjacency list.

Important: Prim’s algorithm does not work on a disconnected
graph. The algorithm that does work is known as Kruskal’s
algorithm, and it instead creates a minimum spanning forest

Main Idea for Prim's Algorithm

Similar to a Tree..?

e 1. Start at any vertex and mark this vertex as visited. Then
mark all other vertices as unvisited
e @ 2. FInd the smallest edge within the graph that connects the

current vertex to a new vertex that is not already In the
minimum spanning tree

o o @ 3. Once this edge is found mark the new vertex as visited and
add the edge’s weight to the current weight for the minimum
spanning tree

o o @ 4. Repeat steps 2 and 3 until there are V-1 edges in the
minimum spanning tree

dample braph

Try to find the minimum spanning tree for the following
graph. Hint: Think greedy

dample braph dolution

Edges that were selected are highlighted in dark
blue were added to our MST

Pseudocode

int praim/(} ¢
create empty min heap of edge= f/the edge with the =mmlle=st weight i= always=
==t number of edge= to 0O
==t total weight to 0O

for each edge comected to the 0T node

pu=h current edge to heap

all node= to not vi=ited
fir=t node to visited
while [Mumber of edges < number of nodes—1 and priority gueus not emptyl |
take top edge from min heap
1f [(the =tart node ha=s not besen visited or the =end node ha=s been visited)
continue

==t current node to visited
increment mumber of edges

add current edge’ = weight to total

for each of the end node=s edge=

pu=h edge to heap

return total weight

L++ [ode

int primi{H{
priority _queue<edge=pq; // (edge{weight start node end node}
int M>TEdges = 0, taalWeight = 0;
forinti = 0; 1 = adj[0].sze(); ++K/ arbitranly choose first node to stat prim’s algonthm from, O is the first node;
pg.pushiledgerad|[0][i].second, 0, adj[0][i].first}); /! adjacency list edge {end node, cost}
1
memset(visited false szeof visited), /! set all nodes tonot visited
visited[0] = true;// set first node to visisted
while(MSTEdges = N-1 && 'pg. empty (1Y Minimum spanning trees have N-1 edges
int w = pg.top().w;
int sn = pg.top().sn;
int en = pg.top().en;
Pa.pop();
Ifivisited[sn] && Wwisited[en] §
visited[en] = true;
MSTEdges++;
totaleight+=w
forint 1 =0; | < adjlen].sze(); i++]
pg. pushiledge { adj[en][i]. second, en, adj[en] [i] .first});// adjacency list edge {end node,cost}
H

1
retum (MSTEdges == MN-1) 7 totalWeight:-1;// if we have less than MN-1 edges then that means the graph is disconnected

Practice Problems, try them out!

Time to get Medieval
Trucking Troubles

Cable TV

Animal Farm

10

http://wcipeg.com/problems/desc/wc01p8
http://wcipeg.com/problems/desc/ccc03s5
http://wcipeg.com/problems/desc/graph3p3
http://wcipeg.com/problems/desc/ccc10s4

dample dolution for Time to bet Medieval

Python

11

https://github.com/csecutsc/ProblemSetSolution/blob/master/medieval.py
https://github.com/csecutsc/ProblemSetSolution/blob/master/medieval.cpp

12

NOUFCES

(n.d.). Retrieved February 12, 2015, from
http://www.mathcs.emory.edu/~cheung/Courses/171/Syllabus/1
1-Graph/prim2.htmil

Algorithm of the Week: Graphs and their Representation. (2012,
April 9). Retrieved February 12, 2015, from
http://jJava.dzone.com/articles/algorithm-week-graphs-and

Prim's algorithm. (n.d.). Retrieved February 12, 2015, from
http://en.wikipedia.org/wiki/Prim's_algorithm

