
COMPUTER SCIENCE ENRICHMENT CLUB

November 11, 2016

WEEK 5: RECURSION



FIBONACCI 

• 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144…. xn , xn= xn-1 + xn-2

•One of the more famous example of sequences is the Fibonacci 

sequence, also know as the golden ratio, it is a interesting 

sequence where the nth number is a sum of the previous two 

numbers preceding the nth number.



TASK

•Create a function, that takes a integer x such that 

x>0 and outputs the sequence of Fibonacci numbers 

up til the xth position. 



SOLUTION



IS THERE ANOTHER WAY ?

• Yes, with recursion another solution can be found



•What is it?

Recursion, see Recursion.

• In simple words, if you have a problem, you break it into smaller 

problems of the same type.

• There are 3 common patterns to recursive decomposition 

• N-1 Approach: Deal with one item (often the first or last), and call the recursion 

on the remaining N-1 

• Divide and Conquer: Split the problem into 2 or more smaller problems

• Indirect Recursion: Function 1 calls function 2, which in turn calls function 1

RECURSION



IS THERE A BETTER WAY ?

Hmmm…. This looks 

Familiar

Base Case

Base Case

Recursive Step



RECURSION AND INDUCTION

• Induction:

-Base Case

-Induction Hypothesis

-Induction Step

• Recursion:

-Base Case

-Recursive Step

• While induction is about proving if n exists then surely n+1 exists, recursion is 

the concept that if a certain task can be done on n elements, then the same 

task can be done on n-1 elements.



RULES OF RECURSION

• Recursion consists of 2 phases:

• Base Case

• Recursive Decomposition

• Base case should be trivial

• Decomposition must make problems smaller/simpler

• Decomposed problems must be self-similar to original

• Decomposition must eventually lead to base case



DRAWING A SIERPINSKI TRIANGLE USING RECURSION



SOME 3D PRINTED EXAMPLES OF RECURSION
(SIERPINSKI PYRAMID)

SamSam



SO WHY USE RECURSION

•Anything that is recursive can be done iteratively, so why 

do it recursively?

• Less error prone – less code to go wrong

•Makes some specific problems easier, in particular tree 

traversal is a lot easier with it

•Reduce time complexity of specific problems



TASK

• Write the following program:

INPUT: an integer x

OUTPUT: x factorial ie 5 factorial = 5! = 5 x 4 x 3 x 2 x 1

Additional Constrains: Must be recursive



SOLUTION
Finding the factorial of a number with N-1 recursive approach



THINGS THAT CAN GO WRONG WITH RECURSION

• Base cases not being properly defined or not reached causing stack overflow 

error

• Implementation

• Sometimes the problem is inherently iterative

• Stack overflow



ADVANCED PROBLEM

• Given a array, and a element to search for, find the index of that element

• Constraint: Must use recursive Divide and Conquer technique.

• Bonus: Do it in O(nlogn)



SOLUTION



ANOTHER ONE

INPUT:


