=k

WEEK 4: DATA STRUCTURES

OCTOBER 21, 2016

COMPUTER SCIENCE ENRICHMENT CLUB

WHAT ARE DATA STRUCTURES?

®* A data structure is a specialized format for organizing and storing data.
®* We need it when the primitive data types are not enough for our task

® Today we are going to cover-

* Static arrays * Dynamic Arrays
* Queues * Stacks

* Linked Lists * Priority Queves
* Sets * Maps

* Binary Trees * Heap

STATIC ARRAYS

* Static array is a data structure, which can store a fixed-sized collection of

elements of the same data type.

Hlint main()

int .E'.]-_']-_'.g'l_.l.rj_:: - "
cont << arrayl[Z2)]

c+

H H H A
=
[
o

[B L R L

o [m

o W e

H H H

1III
1III
1III

i

retarn O

DYNAMIC ARRAYS

® Static array is a data structure, which can store an undefined collection of

elements of the same data type.

lint main()

vector<int> arrayl:;
arrayl.push back(2) ;
arrayl.push back(4):;
arrayl.push back(g) ;
arravl[0] = &;

cont << arrayl[0] << "\n":

cont << arrayl.size() << "\I

arrayl.puzh back(7):
cont << arrayl.size() << "\n";

retorn O;

QUEUES

® Ordered list of object that follows a first-in-first-out (FIFO) structure.

-lint main)
gquense <int> og;
g.push(2)
g.push(3)
g.push(4):

while (!g.empty()){

cout << g.front{) << "\n";

qg.pop () ;

retarn O

STACKS

®* Ordered list of object that follows a last-in-first-out (LIFO) structure.

maini)

stack <int> =;
s.pushiz):
z.push(3):

.push(4) ;

while (!s.emptyvi()){

cout << s.top() << "\n";
s.popl) -

retuorn O

LINKED LISTS

®* Ordered list of data each pointing to its successor

Hlint main()
list<int> my list:;

my list.push back(l):
my list.push back(3):
my list.push back(3):

for (list<int>::iterator it = my list.begin():; it '= my list.end(); it++){

cont << *it << "\n";

return 0:

PRIORITY QUEUES

®* An abstract data type like a regular queue, but where additionally each
element has a "priority" associated with it. In a priority queue, an element with

high priority is served before an element with low priority

i = i gz2.pushin):
#include <functional= Qe.p
ety irint_queueiqg2):
#inclu = p _1q 2lg2);
ety '/ Using lambda to compare elements.

emplate & = voi i (TE q) { auto cmp = [l(int left, int right) { return (left =~ 1) < (right = 1);:}:
tEmpldTEctypEHdme T?.uuld print_queue(T& gq) | std::priority_gqueue<int, std::vector<int=, decltype(cmp)= gq3(cmp);

while(!q.empty()} { ¥_)
std::cout =< g.top() =< " ";

- for{int n : {1,8.5.6,3,4,0,9,7.2
q.popll:

g3.push(n);

} std: :cout =< ' ; print_gqueus{g3);

int main() {
std::priority_queue<int= q;

for{int n : {1,8,5,6,3,4,0,9,7,2})
q.pushin};

print_queue{q):

std::priority queue<int, std::vector<int=, std::greater<int= = q2;

for{int n : {1,8,5,6,3,4,0,9,7.2})

SETS

® Abstract data type that can store certain values, in a sorted order, and no

repeated values.

C.insert(l);

m

C.insert (2)

m

C.in=sert(3) ;

m
—+

C.insert (2);

=
=
set
=

=

m
—+

C.in=sert(3) ;

for (set<int>:: iterator it=my set.begin(); it'=my set.end(); ++it)

I o FE w
= r

cont << =it << T

return O;

MAPS

®* Data type composed of a collection of (key, value) pairs, such that each

possible key appears at most once in the collection

main()

map<char, int> my map;

my map.insert (pair<char,int>| 100}) :

my map.insert (pair<char,int>| F200)) ;

my map.insert (pair<char,int>| po00)) ;

for (map<char,int>::iterator it = my map.begin(); it'=my map.end(); ++1it){
std: tcont << it->first << " =% " << it-FsSecond << :

BINARY TREES

®* A Binary Search Tree (BST) is a tree in which all the nodes follow
the below-mentioned properties —

®* The left sub-tree of a node has a key less than or equal to its parent

node's key.

® The right sub-tree of a node has a key greater than or equal to its parent

node's key.

HEAP

® A binary heap is a complete binary tree which satisfies the heap
ordering property. The ordering can be one of two types:

® the min-heap property: the value of each node is greater than or
equal to the value of its parent, with the minimum-value element at
the root.

® the max-heap property: the value of each node is less than or equal
to the value of its parent, with the maximum-value element at the

root.

