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What is a Graph?
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What does this remind us of?

Similar to a Tree..?

Yep, Trees are a special type of Graph.

In particular, Trees are Graphs that:
Have no loops
Have no circuits
There are no self-loops
Only one path between two vertices



A graph is usually made out of:
Nodes called Vertices

They can contain values

Lines called Edges
They can be assigned distance values
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The Definition of a Graph
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How do we Define a Graph?

To define a graph, we give a set of the Vertices
and the Edges

For example, for the graph on the left:
V = {1, 2, 3, 4, 5, 6}
E = {(6, 4), (4, 5), (4, 3), (3, 2), (5, 2), (5, 1), (2, 1)}
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What can we do with graphs?

Let’s think of some practical usages for 
Graphs.

Let’s say you’re stuck in City 6 and you want to get 
to City 1. You look at a bus map and  notice that 
City 6 doesn’t connect to City 1 directly, but you 
have to transfer busses at different cities. You can 
represent this using a Graph.
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Directed and Undirected Graphs

Directed Graphs – Edges can be bidirectional 
or unidirectional
Undirected Graphs – Edges are always 
assumed to be bidirectional

Logically, using our bus example, we should 
have a undirected graph
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Node Weighted and Unweighted Graphs

Weighted Graphs – Nodes are assigned a 
‘weight’ or value
Unweighted Graphs – Nodes are not 
assigned any values

Logically, using our bus example, we should 
have a node-unweighted graph
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Edge Weighted and Unweighted Graphs

Weighted Graphs – Edges are assigned a 
‘weight’ or distance value
Unweighted Graphs – Edges are assigned no 
distance values – assumed to be one

Logically, using our bus example, we should 
have a edge-weighted graph
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Applications of Edge-Weighted Graphs

Let’s say we want to drive to City 1. We want 
to find the Shortest Path between City 6 and 
City 1 to save on gas.

What is the Shortest Path in this Graph from 
City 6 to City 1?
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Shortest Path Algorithms

We’ll cover more on this later. For now, some 
examples of shortest path algorithms are:

• Dijkstra's Algorithm
• Bellman-Ford Algorithm
• Floyd-Warshall Algorithm
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Graph Cycles

What does it mean for a graph to have a 
Cycle?

We define a Cycle as a path whose first and 
last vertex is the same. For example, AFEGA
is a cycle in the graph to the left.

We call a graph with cycles Cyclic. Otherwise, 
it is an Acyclic graph.
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Cycle Equivalency

Are the cycles AFEGA and FEGAF equivalent?

Are the cycles AFEGA and AGEFA equivalent?
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Cycle Equivalency

Are the cycles AFEGA and FEGAF equivalent?
Yes – F must go to E must go to G and so on

Are the cycles AFEGA and AGEFA equivalent?
No – The order is completely reversed
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Simple Cycles and Closed Walks

There are different types of cycles:

A Simple Cycle is a cycle where no vertices 
are repeated except the first and the last

An example would be AGEFA

A Closed Walk is any sequence starting and 
ending on the same vertex

An example would be ACAGEDFA



16



17

Spanning Trees

Some graphs look redundant. Why do we need 
A  B and A  C when we have already
A  B  C?

A Spanning Tree is 
A graph which contains all of the vertices and 
a subset of the edges of the original graph 
and forms a tree, but contains no simple 
cycles.
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Minimum Spanning Trees

If A  B has weight 6, but A  C  B has 
weight 4, would path A  B be redundant?

We introduce the concept of a Minimum 
Spanning Tree – minimizing the total edge 
weight of our new tree while still connecting 
all the vertices
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Applications of Minimum Spanning Trees

You have a business with several offices; you 
want to lease phone lines to connect them up 
with each other; and the phone company 
charges different amounts of money to 
connect different pairs of cities.

We want a set of lines that connects all our 
offices with minimum cost. We would model 
the solution using a Minimum Spanning Tree
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Minimum Spanning Tree Algorithms

We’ll cover more on this later. For now, some 
examples of shortest path algorithms are:

• Prim’s Algorithm
• Kruskal’s Algorithm
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Adjacency Matrices

Let’s say we want to find all paths of length 4 
in our graph. We can arbitrarily count all of 
the paths (and accidentally repeat a few).

We should instead use an Adjacency Matrix

Each row represents the nodes A, B, C …
Each column represents the nodes A, B, C ...
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Adjacency Matrices

How do we write an initial Adjacency Matrix? 

We set up a grid, then populate it with how 
many length-one paths there are from each 
row item to each column item (e.g. B cannot 
go to A, thus M2,1 is zero)
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Adjacency Matrix Multiplication

When we raise the Adjacency Matrix to a power, we get 
the number of paths of length n where n is the power we 
raise it to.

For example, the number of path length two is M2 which 
would be the matrix at the right 

We can read this as:
A  B has 3 paths of length 2
C  A has 1 path of length 2
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Question 1

Given the following, draw out this undirected graph

V = {A, B, C, D, E, F, G}

E = {(A, B), (C, D), (D, G), (D, E), (F, B), (C, E), (F, G)}

Is this graph cyclic? If so, how many cycles from A exist?

Draw this graph but assume it is directed instead. Is this graph cyclic?
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Question 2

Draw out the graph given by this Adjacency Matrix
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Question 3

Draw out the Adjacency Matrix given by this graph.
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Question 4

Determine the number of paths of length 3 ending at C


